In [1]:
from functools import partial
from rpy2.ipython import html
html.html_rdataframe=partial(html.html_rdataframe, table_class="docutils")

dplyr in Python

We need 2 things for this:

1- A data frame (using one of R's demo datasets).

In [2]:
from rpy2.robjects.packages import importr, data
datasets = importr('datasets')
mtcars_env = data(datasets).fetch('mtcars')
mtcars = mtcars_env['mtcars']

In addition to that, and because this tutorial is in a notebook, we initialize HTML rendering for R objects (pretty display of R data frames).

In [3]:
import rpy2.ipython.html
rpy2.ipython.html.init_printing()

2- dplyr

In [4]:
from rpy2.robjects.lib.dplyr import DataFrame

With this we have the choice of chaining (D3-style)

In [5]:
dataf = (DataFrame(mtcars).
         filter('gear>3').
         mutate(powertoweight='hp*36/wt').
         group_by('gear').
         summarize(mean_ptw='mean(powertoweight)'))

dataf
Out[5]:
DataFrame with 2 rows and 2 columns:
gear mean_ptw
0 1 4.0 1237.1266499803169
1 2 5.0 2574.0331639315027

or with pipes (magrittr style).

In [6]:
# currently no longer working
from rpy2.robjects.lib.dplyr import (filter,
                                     mutate,
                                     group_by,
                                     summarize)

if False:
    dataf = (DataFrame(mtcars) >>
             filter('gear>3') >>
             mutate(powertoweight='hp*36/wt') >>
             group_by('gear') >>
             summarize(mean_ptw='mean(powertoweight)'))

    dataf

The strings passed to the dplyr function are evaluated as expression, just like this is happening when using dplyr in R. This means that when writing mean(powertoweight) the R function mean() is used.

Using a Python function is not too difficult though. We can just call Python back from R. To achieve this we simply use the decorator rternalize.

In [7]:
# Define a python function, and make
# it a function R can use through `rternalize`
from rpy2.rinterface import rternalize
@rternalize
def mean_np(x):
    import statistics
    return statistics.mean(x)

# Bind that function to a symbol in R's
# global environment
from rpy2.robjects import globalenv
globalenv['mean_np'] = mean_np

# Write a dplyr chain of operations,
# using our Python function `mean_np`
dataf = (DataFrame(mtcars).
         filter('gear>3').
         mutate(powertoweight='hp*36/wt').
         group_by('gear').
         summarize(mean_ptw='mean(powertoweight)',
                   mean_np_ptw='mean_np(powertoweight)'))

dataf
Out[7]:
DataFrame with 2 rows and 3 columns:
gear mean_ptw mean_np_ptw
0 1 4.0 1237.1266499803169 1237.1266499803169
1 2 5.0 2574.0331639315027 2574.0331639315027

It is also possible to carry this out without having to place the custom function in R's global environment.

In [8]:
del(globalenv['mean_np'])
In [9]:
from rpy2.robjects.lib.dplyr import StringInEnv
from rpy2.robjects import Environment
my_env = Environment()
my_env['mean_np'] = mean_np

dataf = (DataFrame(mtcars).
         filter('gear>3').
         mutate(powertoweight='hp*36/wt').
         group_by('gear').
         summarize(mean_ptw='mean(powertoweight)',
                   mean_np_ptw=StringInEnv('mean_np(powertoweight)',
                                           my_env)))

dataf
Out[9]:
DataFrame with 2 rows and 3 columns:
gear mean_ptw mean_np_ptw
0 1 4.0 1237.1266499803169 1237.1266499803169
1 2 5.0 2574.0331639315027 2574.0331639315027

note: rpy2's interface to dplyr is implementing a fix to the (non-?)issue 1323 (https://github.com/hadley/dplyr/issues/1323)

The seamless translation of transformations to SQL whenever the data are in a table can be used directly. Since we are lifting the original implementation of dplyr, it just works.

In [10]:
from rpy2.robjects.lib.dplyr import dplyr
# in-memory SQLite database broken in dplyr's src_sqlite
# db = dplyr.src_sqlite(":memory:")
import tempfile
with tempfile.NamedTemporaryFile() as db_fh:
    db = dplyr.src_sqlite(db_fh.name)
    # copy the table to that database
    dataf_db = DataFrame(mtcars).copy_to(db, name="mtcars")
    res = (dataf_db.
           filter('gear>3').
           mutate(powertoweight='hp*36/wt').
           group_by('gear').
           summarize(mean_ptw='mean(powertoweight)'))
    print(res)
# 
# Source:   lazy query [?? x 2]
# Database: sqlite 3.29.0 [/tmp/tmprmrxugij]
   gear mean_ptw
  <dbl>    <dbl>
1     4    1237.
2     5    2574.

Since we are manipulating R objects, anything available to R is also available to us. If we want to see the SQL code generated that's:

In [11]:
silent = dplyr.show_query(res)
<SQL>
SELECT `gear`, AVG(`powertoweight`) AS `mean_ptw`
FROM (SELECT `mpg`, `cyl`, `disp`, `hp`, `drat`, `wt`, `qsec`, `vs`, `am`, `gear`, `carb`, `hp` * 36.0 / `wt` AS `powertoweight`
FROM (SELECT *
FROM `mtcars`
WHERE (`gear` > 3.0)))
GROUP BY `gear`

The conversion rules in rpy2 make the above easily applicable to pandas data frames, completing the "lexical loan" of the dplyr vocabulary from R.

In [12]:
from rpy2.robjects import pandas2ri
from rpy2.robjects import default_converter
from rpy2.robjects.conversion import localconverter

# Using a conversion context in which the pandas conversion is
# added to the default conversion rules, the rpy2 object
# `mtcars` (an R data frame) is converted to a pandas data frame.
with localconverter(default_converter + pandas2ri.converter) as cv:
    pd_mtcars = mtcars_env['mtcars']
print(type(pd_mtcars))
<class 'pandas.core.frame.DataFrame'>

Using a local converter lets us also go from the pandas data frame to our dplyr-augmented R data frame and use the dplyr transformations on it.

In [13]:
with localconverter(default_converter + pandas2ri.converter) as cv:
    dataf = (DataFrame(pd_mtcars).
             filter('gear>=3').
             mutate(powertoweight='hp*36/wt').
             group_by('gear').
             summarize(mean_ptw='mean(powertoweight)'))

dataf
Out[13]:
DataFrame with 1 rows and 1 columns:
mean_ptw
0 1 1632.0477884748632

Reuse. Get things done. Don't reimplement.