# -*- coding: utf-8 -*-
"""
======
Rmagic
======
Magic command interface for interactive work with R in ipython. %R and %%R are
the line and cell magics, respectively.
.. note::
You will need a working copy of R.
Usage
=====
To enable the magics below, execute `%load_ext rpy2.ipython`.
`%R`
{R_DOC}
`%Rpush`
{RPUSH_DOC}
`%Rpull`
{RPULL_DOC}
`%Rget`
{RGET_DOC}
"""
# -----------------------------------------------------------------------------
# Copyright (C) 2012 The IPython Development Team
# Copyright (C) 2013-2019 rpy2 authors
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
# -----------------------------------------------------------------------------
import contextlib
import sys
import tempfile
from glob import glob
import os
from shutil import rmtree
import textwrap
import typing
import rpy2.rinterface_lib.callbacks
import rpy2.rinterface as ri
import rpy2.rinterface_lib.openrlib
import rpy2.robjects as ro
import rpy2.robjects.packages as rpacks
from rpy2.robjects.lib import grdevices
from rpy2.robjects.conversion import (Converter,
localconverter,
get_conversion)
import warnings
# Try loading pandas and numpy, emitting a warning if either cannot be
# loaded.
try:
import numpy # noqa: F401
NUMPY_IMPORTED = True
try:
import pandas # noqa: F401
PANDAS_IMPORTED = True
except ImportError as ie:
PANDAS_IMPORTED = False
warnings.warn('The Python package `pandas` is strongly '
'recommended when using `rpy2.ipython`. '
'Unfortunately it could not be loaded '
'(error: %s), '
'but at least we found `numpy`.' % str(ie))
except ImportError as ie:
NUMPY_IMPORTED = False
PANDAS_IMPORTED = False
warnings.warn('The Python package `pandas` is strongly '
'recommended when using `rpy2.ipython`. '
'Unfortunately it could not be loaded, '
'as we did not manage to load `numpy` '
'in the first place (error: %s).' % str(ie))
# IPython imports.
import IPython.display # type: ignore
from IPython.core import displaypub # type: ignore
from IPython.core.magic import (Magics, # type: ignore
magics_class,
line_cell_magic,
line_magic,
needs_local_scope,
no_var_expand)
from IPython.core.magic_arguments import (argument, # type: ignore
argument_group,
magic_arguments,
parse_argstring)
template_converter = get_conversion()
DEVICES_STATIC_RASTER: typing.Set[str] = {'png', 'jpeg'}
DEVICES_STATIC = DEVICES_STATIC_RASTER | {'svg'}
DEVICES_SUPPORTED = DEVICES_STATIC | {'X11'}
if NUMPY_IMPORTED:
if PANDAS_IMPORTED:
def _get_ipython_template_converter(template_converter=template_converter):
from rpy2.robjects import numpy2ri
template_converter += numpy2ri.converter
from rpy2.robjects import pandas2ri
template_converter += pandas2ri.converter
return template_converter
else:
def _get_ipython_template_converter(template_converter=template_converter):
from rpy2.robjects import numpy2ri
template_converter += numpy2ri.converter
return template_converter
else:
def _get_ipython_template_converter(template_converter=template_converter):
return template_converter
def _get_converter(template_converter=template_converter):
return Converter('ipython conversion',
template=template_converter)
ipy_template_converter = _get_ipython_template_converter(template_converter)
converter = _get_converter(template_converter=ipy_template_converter)
def CELL_DISPLAY_DEFAULT(res, args):
return ro.r.show(res)
[docs]
class RInterpreterError(ri.embedded.RRuntimeError):
"""An error when running R code in a %%R magic cell."""
msg_prefix_template = ('Failed to parse and evaluate line %r.\n'
'R error message: %r')
rstdout_prefix = '\nR stdout:\n'
def __init__(self, line, err, stdout):
self.line = line
self.err = err.rstrip()
self.stdout = stdout.rstrip()
def __str__(self):
s = (self.msg_prefix_template %
(self.line, self.err))
if self.stdout and (self.stdout != self.err):
s += self.rstdout_prefix + self.stdout
return s
# The default conversion for lists is currently to make them an R list. That
# has some advantages, but can be inconvenient (and, it's inconsistent with
# the way python lists are automatically converted by numpy functions), so
# for interactive use in the rmagic, we call unlist, which converts lists to
# vectors **if the list was of uniform (atomic) type**.
@converter.py2rpy.register(list)
def py2rpy_list(obj):
# simplify2array is a utility function, but nice for us
# TODO: use an early binding of the R function
cv = ro.conversion.get_conversion()
robj = ri.ListSexpVector(
[cv.py2rpy(x) for x in obj]
)
res = ro.r.simplify2array(robj)
# The current default converter for the ipython rmagic
# might make `res` a numpy array. We need to ensure that
# a rpy2 objects is returned (issue #866).
res_rpy = cv.py2rpy(res)
return res_rpy
def _find(name: str, ns: dict):
"""Find a Python name, which might include dot-separated path to a name.
Args:
- name: a key in dict if no dot ('.') in it, otherwise
a sequence of dot-separated namespaces with the name of the
object last (e.g., `package.module.name`).
Returns:
The object wanted. Raises a NameError or an AttributeError if not found.
"""
obj = None
obj_path = name.split('.')
look_for_i = 0
try:
obj = ns[obj_path[look_for_i]]
except KeyError as e:
message = f"name '{obj_path[look_for_i]}' is not defined."
if obj_path[look_for_i] == "":
message += ' Did you forget to remove trailing comma `,` or included spaces?'
raise NameError(message) from e
look_for_i += 1
while look_for_i < len(obj_path):
try:
obj = getattr(obj, obj_path[look_for_i])
except AttributeError as e:
raise AttributeError(
f"'{'.'.join(obj_path[:look_for_i])}' "
f"has no attribute '{obj_path[look_for_i]}'."
) from e
look_for_i += 1
return obj
def _parse_input_argument(arg: str) -> typing.Tuple[str, str]:
"""Process the input to an R magic commmand (`%R`, `%%R`, `%Rpush`)."""
arg_elts = arg.split('=', maxsplit=1)
if len(arg_elts) == 1:
rhs = arg_elts[0]
lhs = rhs
else:
lhs, rhs = arg_elts
return lhs, rhs
# TODO: remove ?
# # The R magic is opiniated about what the R vectors should become.
# @converter.ri2ro.register(ri.SexpVector)
# def _(obj):
# if 'data.frame' in obj.rclass:
# # request to turn it to a pandas DataFrame
# res = converter.rpy2py(obj)
# else:
# res = ro.sexpvector_to_ro(obj)
# return res
[docs]
@magics_class
class RMagics(Magics):
"""A set of magics useful for interactive work with R via rpy2.
"""
def __init__(self, shell, converter=converter,
cache_display_data=False, device='png'):
"""
Parameters
----------
shell : IPython shell
converter : rpy2 Converter instance to use. If None,
the magic's current converter is used.
cache_display_data : bool
If True, the published results of the final call to R are
cached in the variable 'display_cache'.
device : ['png', 'jpeg', 'X11', 'svg']
Device to be used for plotting.
Currently only 'png', 'jpeg', 'X11' and 'svg' are supported,
with 'X11' allowing interactive plots on a locally-running jupyter,
and the other allowing to visualize R figure generated on a remote
jupyter server/kernel.
"""
super(RMagics, self).__init__(shell)
self.cache_display_data = cache_display_data
self.Rstdout_cache = []
self.converter = converter
self.set_R_plotting_device(device)
[docs]
def set_R_plotting_device(self, device):
"""
Set which device R should use to produce plots.
If device == 'svg' then the package 'Cairo'
must be installed. Because Cairo forces "onefile=TRUE",
it is not posible to include multiple plots per cell.
:param device: ['png', 'jpeg', 'X11', 'svg']
Device to be used for plotting.
Currently only 'png', 'jpeg', 'X11' and 'svg' are supported,
with 'X11' allowing interactive plots on a locally-running jupyter,
and the other allowing to visualize R figure generated on a remote
jupyter server/kernel.
"""
device = device.strip()
if device not in DEVICES_SUPPORTED:
raise ValueError(
f'device must be one of {DEVICES_SUPPORTED}, got "{device}"'
)
if device == 'svg':
try:
self.cairo = rpacks.importr('Cairo')
except ri.embedded.RRuntimeError as rre:
if rpacks.isinstalled('Cairo'):
msg = ('An error occurred when trying to load the ' +
'R package Cairo\'\n%s' % str(rre))
else:
msg = textwrap.dedent("""
The R package 'Cairo' is required but it does not appear
to be installed/available. Try:
import rpy2.robjects.packages as rpacks
utils = rpacks.importr('utils')
utils.chooseCRANmirror(ind=1)
utils.install_packages('Cairo')
""")
raise RInterpreterError(msg)
self.device = device
@line_magic
def Rdevice(self, line):
"""
Change the plotting device R uses to one of {}.
""".format(DEVICES_SUPPORTED)
self.set_R_plotting_device(line.strip())
[docs]
def eval(self, code):
"""
Parse and evaluate a line of R code with rpy2.
Returns the output to R's stdout() connection,
the value generated by evaluating the code, and a
boolean indicating whether the return value would be
visible if the line of code were evaluated in an R REPL.
R Code evaluation and visibility determination are done via an R call
of the form withVisible(code_string), and this entire expression needs
to be evaluated in R (we can't use rpy2 function proxies here, as
withVisible is a LISPy R function).
"""
with contextlib.ExitStack() as stack:
obj_in_module = (rpy2.rinterface_lib
.callbacks.obj_in_module)
if self.cache_display_data:
stack.enter_context(
obj_in_module(
rpy2.rinterface_lib.callbacks,
'consolewrite_print',
self.write_console_regular
)
)
stack.enter_context(
obj_in_module(rpy2.rinterface_lib.callbacks,
'consolewrite_warnerror',
self.write_console_regular)
)
stack.enter_context(
obj_in_module(
rpy2.rinterface_lib.callbacks,
'_WRITECONSOLE_EXCEPTION_LOG',
'%s')
)
try:
# Need the newline in case the last line in code is a comment.
r_expr = ri.parse(code)
value, visible = ri.evalr_expr_with_visible(
r_expr
)
except (ri.embedded.RRuntimeError, ValueError) as exception:
# Otherwise next return seems to have copy of error.
warning_or_other_msg = self.flush()
raise RInterpreterError(code, str(exception),
warning_or_other_msg)
finally:
ro._print_deferred_warnings()
text_output = self.flush()
return text_output, value, visible[0]
[docs]
def write_console_regular(self, output):
"""
A hook to capture R's stdout in a cache.
"""
self.Rstdout_cache.append(output)
[docs]
def flush(self):
"""
Flush R's stdout cache to a string, returning the string.
"""
value = ''.join(self.Rstdout_cache)
self.Rstdout_cache = []
return value
def _import_name_into_r(
self, arg: str, env: ri.SexpEnvironment,
local_ns: dict
) -> None:
lhs, rhs = _parse_input_argument(arg)
val = None
try:
val = _find(rhs, local_ns)
except NameError:
if self.shell is None:
warnings.warn(
f'The shell is None. Unable to look for {rhs}.'
)
else:
val = _find(rhs, self.shell.user_ns)
if val is not None:
env[lhs] = val
def _find_converter(
self, name: str, local_ns: dict
) -> ro.conversion.Converter:
converter = None
if name is None:
converter = self.converter
else:
try:
converter = _find(name, local_ns)
except NameError:
if self.shell is None:
warnings.warn(
f'The shell is None. Unable to look for converter {name}.'
)
else:
converter = _find(name, self.shell.user_ns)
if not isinstance(converter, Converter):
raise TypeError("'%s' must be a %s object (but it is a %s)."
% (converter, Converter,
type(converter)))
return converter
# @skip_doctest
[docs]
@magic_arguments()
@argument(
'-c', '--converter',
default=None,
help=textwrap.dedent("""
Name of local converter to use. A converter contains the rules to
convert objects back and forth between Python and R. If not
specified/None, the defaut converter for the magic\'s module is used
(that is rpy2\'s default converter + numpy converter + pandas converter
if all three are available)."""))
@argument(
'inputs',
nargs='*',
)
@needs_local_scope
@line_magic
def Rpush(self, line, local_ns=None):
"""
A line-level magic that pushes
variables from python to R. The line should be made up
of whitespace separated variable names in the IPython
namespace::
In [7]: import numpy as np
In [8]: X = np.array([4.5,6.3,7.9])
In [9]: X.mean()
Out[9]: 6.2333333333333343
In [10]: %Rpush X
In [11]: %R mean(X)
Out[11]: array([ 6.23333333])
"""
args = parse_argstring(self.Rpush, line)
converter = self._find_converter(args.converter, local_ns)
if local_ns is None:
local_ns = {}
with localconverter(converter):
for arg in args.inputs:
self._import_name_into_r(arg, ro.globalenv, local_ns)
# @skip_doctest
[docs]
@magic_arguments()
@argument(
'outputs',
nargs='*',
)
@line_magic
def Rpull(self, line):
"""
A line-level magic for R that pulls
variables from python to rpy2::
In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4)
In [19]: %Rpull x y z
In [20]: x
Out[20]: array([ 3. , 4. , 6.7])
In [21]: y
Out[21]: array([ 4., 6., 7.])
In [22]: z
Out[22]:
array(['a', '3', '4'],
dtype='|S1')
This is useful when a structured array is desired as output, or
when the object in R has mixed data types.
See the %%R docstring for more examples.
Notes
-----
Beware that R names can have dots ('.') so this is not fool proof.
To avoid this, don't name your R objects with dots...
"""
args = parse_argstring(self.Rpull, line)
outputs = args.outputs
with localconverter(self.converter):
for output in outputs:
robj = ri.globalenv.find(output)
self.shell.push({output: robj})
# @skip_doctest
[docs]
@magic_arguments()
@argument(
'output',
nargs=1,
type=str,
)
@line_magic
def Rget(self, line):
"""
Return an object from rpy2, possibly as a structured array (if
possible).
Similar to Rpull except only one argument is accepted and the value is
returned rather than pushed to self.shell.user_ns::
In [3]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]
In [4]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'),
... (3, 2.1, 'c'), (4, 5, 'e')],
... dtype=dtype)
In [5]: %R -i datapy
In [6]: %Rget datapy
Out[6]:
array([['1', '2', '3', '4'],
['2', '3', '2', '5'],
['a', 'b', 'c', 'e']],
dtype='|S1')
"""
args = parse_argstring(self.Rget, line)
output = args.output
# get the R object with the given name, starting from globalenv
# in the search path
with localconverter(self.converter):
res = ro.globalenv.find(output[0])
return res
[docs]
def setup_graphics(self, args):
"""Setup graphics in preparation for evaluating R code.
args : argparse bunch (should be whatever the R magic got)."""
if getattr(args, 'units') is not None:
if args.units != "px" and getattr(args, 'res') is None:
args.res = 72
plot_arg_names = ['width', 'height', 'pointsize', 'bg', 'type']
if self.device in DEVICES_STATIC_RASTER:
plot_arg_names += ['units', 'res']
argdict = {}
for name in plot_arg_names:
val = getattr(args, name)
if val is not None:
argdict[name] = val
tmpd = None
if self.device in DEVICES_STATIC:
# Create a temporary directory for R graphics output
# TODO: Do we want to capture file output for other device types
# other than svg & png?
tmpd = tempfile.mkdtemp()
tmpd_fix_slashes = tmpd.replace('\\', '/')
if self.device in DEVICES_STATIC_RASTER:
# Note: that %% is to pass into R for interpolation there.
rfunc = getattr(grdevices, self.device)
rfunc(f'{tmpd_fix_slashes}/Rplots%%03d.{self.device}',
**argdict)
elif self.device == 'svg':
self.cairo.CairoSVG(f'{tmpd_fix_slashes}/Rplot.svg',
**argdict)
elif self.device == 'X11':
# Open a new X11 device, except if the current one is already an
# X11 device.
ro.r("""
if (substr(names(dev.cur()), 1, 3) != "X11") {
X11()
}""")
else:
# TODO: This isn't actually an R interpreter error...
raise RInterpreterError(
f'device must be one of {DEVICES_SUPPORTED}')
return tmpd
[docs]
def publish_graphics(self, graph_dir, isolate_svgs=True):
"""Wrap graphic file data for presentation in IPython.
This method is deprecated. Use `display_figures` or
'display_figures_svg` instead.
graph_dir : str
Probably provided by some tmpdir call
isolate_svgs : bool
Enable SVG namespace isolation in metadata"""
warnings.warn('Use method fetch_figures.', DeprecationWarning)
# read in all the saved image files
images = []
display_data = []
# Default empty metadata dictionary.
md = {}
if self.device == 'png':
for imgfile in sorted(glob('%s/Rplots*png' % graph_dir)):
if os.stat(imgfile).st_size >= 1000:
with open(imgfile, 'rb') as fh_img:
images.append(fh_img.read())
else:
# as onefile=TRUE, there is only one .svg file
imgfile = "%s/Rplot.svg" % graph_dir
# Cairo creates an SVG file every time R is called
# -- empty ones are not published
if os.stat(imgfile).st_size >= 1000:
with open(imgfile, 'rb') as fh_img:
images.append(fh_img.read().decode())
mimetypes = {'png': 'image/png', 'svg': 'image/svg+xml'}
mime = mimetypes[self.device]
# By default, isolate SVG images in the Notebook to avoid garbling.
if images and self.device == "svg" and isolate_svgs:
md = {'image/svg+xml': dict(isolated=True)}
# Flush text streams before sending figures, helps a little with
# output.
for image in images:
# TODO: Synchronization in the console (though it's a bandaid, not a
# real solution).
sys.stdout.flush()
sys.stderr.flush()
display_data.append(('RMagic.R', {mime: image}))
return display_data, md
# @skip_doctest
[docs]
@magic_arguments()
@argument(
'-i', '--input', action='append',
help=textwrap.dedent("""
Names of Python objects to be assigned to R
objects after using the default converter or
one specified through the argument `-c/--converter`.
Multiple inputs can be passed separated only by commas with no
whitespace.
Names of Python objects can be either the name of an object
in the current notebook/ipython shell, or a path to a name
nested in a namespace visible from the current notebook/ipython
shell. For example, '-i myvariable' or
'-i mypackage.myothervariable' would both work.
Each input can be either the name of Python object, in which
case the same name will be used for the R object, or an
expression of the form <r-name>=<python-name>.""")
)
@argument(
'-o', '--output', action='append',
help=textwrap.dedent("""
Names of variables to be pushed from rpy2 to `shell.user_ns` after
executing cell body (rpy2's internal facilities will apply ri2ro as
appropriate). Multiple names can be passed separated only by commas
with no whitespace.""")
)
@argument(
'-n', '--noreturn',
help='Force the magic to not return anything.',
action='store_true',
default=False
)
@argument_group("Plot", "Arguments to plotting device")
@argument(
'-w', '--width', type=float,
help='Width of plotting device in R.'
)
@argument(
'-h', '--height', type=float,
help='Height of plotting device in R.'
)
@argument(
'-p', '--pointsize', type=int,
help='Pointsize of plotting device in R.'
)
@argument(
'-b', '--bg',
help='Background of plotting device in R.'
)
@argument_group("SVG", "SVG specific arguments")
@argument(
'--noisolation',
help=textwrap.dedent("""
Disable SVG isolation in the Notebook. By default, SVGs are isolated to
avoid namespace collisions between figures. Disabling SVG isolation
allows to reference previous figures or share CSS rules across a set
of SVGs."""),
action='store_false',
default=True,
dest='isolate_svgs'
)
@argument_group("PNG", "PNG specific arguments")
@argument(
'-u', '--units', type=str, choices=["px", "in", "cm", "mm"],
help=textwrap.dedent("""
Units of png plotting device sent as an argument to *png* in R. One of
["px", "in", "cm", "mm"]."""))
@argument(
'-r', '--res', type=int,
help=textwrap.dedent("""
Resolution of png plotting device sent as an argument to *png* in R.
Defaults to 72 if *units* is one of ["in", "cm", "mm"].""")
)
@argument(
'--type', type=str,
choices=['cairo', 'cairo-png', 'Xlib', 'quartz'],
help=textwrap.dedent("""
Type device used to generate the figure.
"""))
@argument(
'-c', '--converter',
default=None,
help=textwrap.dedent("""
Name of local converter to use. A converter contains the rules to
convert objects back and forth between Python and R. If not
specified/None, the defaut converter for the magic\'s module is used
(that is rpy2\'s default converter + numpy converter + pandas converter
if all three are available)."""))
@argument(
'-d', '--display',
default=None,
help=textwrap.dedent("""
Name of function to use to display the output of an R cell (the last
object or function call that does not have a left-hand side
assignment). That function will have the signature `(robject, args)`
where `robject` is the R objects that is an output of the cell, and
`args` a namespace with all parameters passed to the cell.
"""))
@argument(
'code',
nargs='*',
)
@needs_local_scope
@line_cell_magic
@no_var_expand
def R(self, line, cell=None, local_ns=None):
"""
Execute code in R, optionally returning results to the Python runtime.
In line mode, this will evaluate an expression and convert the returned
value to a Python object. The return value is determined by rpy2's
behaviour of returning the result of evaluating the final expression.
Multiple R expressions can be executed by joining them with
semicolons::
In [9]: %R X=c(1,4,5,7); sd(X); mean(X)
Out[9]: array([ 4.25])
In cell mode, this will run a block of R code. The resulting value
is printed if it would be printed when evaluating the same code
within a standard R REPL.
Nothing is returned to python by default in cell mode::
In [10]: %%R
....: Y = c(2,4,3,9)
....: summary(lm(Y~X))
Call:
lm(formula = Y ~ X)
Residuals:
1 2 3 4
0.88 -0.24 -2.28 1.64
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0800 2.3000 0.035 0.975
X 1.0400 0.4822 2.157 0.164
Residual standard error: 2.088 on 2 degrees of freedom
Multiple R-squared: 0.6993,Adjusted R-squared: 0.549
F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638
In the notebook, plots are published as the output of the cell::
%R plot(X, Y)
will create a scatter plot of X bs Y.
If cell is not None and line has some R code, it is prepended to
the R code in cell.
Objects can be passed back and forth between rpy2 and python via the
-i -o flags in line::
In [14]: Z = np.array([1,4,5,10])
In [15]: %R -i Z mean(Z)
Out[15]: array([ 5.])
In [16]: %R -o W W=Z*mean(Z)
Out[16]: array([ 5., 20., 25., 50.])
In [17]: W
Out[17]: array([ 5., 20., 25., 50.])
The return value is determined by these rules:
* If the cell is not None (i.e., has contents), the magic returns None.
* If the final line results in a NULL value when evaluated
by rpy2, then None is returned.
* No attempt is made to convert the final value to a structured array.
Use %Rget to push a structured array.
* If the -n flag is present, there is no return value.
* A trailing ';' will also result in no return value as the last
value in the line is an empty string.
"""
args = parse_argstring(self.R, line)
# arguments 'code' in line are prepended to
# the cell lines
if cell is None:
code = ''
return_output = True
line_mode = True
else:
code = cell
return_output = False
line_mode = False
code = ' '.join(args.code) + code
# if there is no local namespace then default to an empty dict
if local_ns is None:
local_ns = {}
converter = self._find_converter(args.converter, local_ns)
if args.input:
with localconverter(converter) as cv:
for arg in ','.join(args.input).split(','):
self._import_name_into_r(arg, ro.globalenv, local_ns)
if args.display:
try:
cell_display = local_ns[args.display]
except KeyError:
try:
cell_display = self.shell.user_ns[args.display]
except KeyError:
raise NameError("name '%s' is not defined" % args.display)
else:
cell_display = CELL_DISPLAY_DEFAULT
tmpd = self.setup_graphics(args)
text_output = ''
display_data = []
try:
if line_mode:
for line in code.split(';'):
text_result, result, visible = self.eval(line)
text_output += text_result
if text_result:
# The last line printed something to the console so
# we won't return it.
return_output = False
else:
text_result, result, visible = self.eval(code)
text_output += text_result
if visible:
with contextlib.ExitStack() as stack:
obj_in_module = (rpy2.rinterface_lib
.callbacks
.obj_in_module)
if self.cache_display_data:
stack.enter_context(
obj_in_module(rpy2.rinterface_lib
.callbacks,
'consolewrite_print',
self.write_console_regular)
)
stack.enter_context(
obj_in_module(
rpy2.rinterface_lib.callbacks,
'consolewrite_warnerror',
self.write_console_regular
)
)
stack.enter_context(
obj_in_module(
rpy2.rinterface_lib.callbacks,
'_WRITECONSOLE_EXCEPTION_LOG',
'%s')
)
cell_display(result, args)
text_output += self.flush()
except RInterpreterError as e:
# TODO: Maybe we should make this red or something?
print(e.stdout)
if not e.stdout.endswith(e.err):
print(e.err)
raise e
finally:
if self.device in DEVICES_STATIC:
ro.r('dev.off()')
if text_output:
# display_data.append(('RMagic.R', {'text/plain':text_output}))
displaypub.publish_display_data(
source='RMagic.R',
data={'text/plain': text_output})
# publish figures generated by R.
if self.device in DEVICES_STATIC_RASTER:
for _ in display_figures(tmpd, format=self.device):
if self.cache_display_data:
display_data.append(_)
elif self.device == 'svg':
for _ in display_figures_svg(tmpd):
if self.cache_display_data:
display_data.append(_)
# kill the temporary directory - currently created only for "svg"
# and ("png"|"jpeg") (else it's None).
if tmpd:
rmtree(tmpd)
if args.output:
with localconverter(converter) as cv:
for output in ','.join(args.output).split(','):
output_ipy = ro.globalenv.find(output)
self.shell.push({output: output_ipy})
# this will keep a reference to the display_data
# which might be useful to other objects who happen to use
# this method
if self.cache_display_data:
self.display_cache = display_data
# We're in line mode and return_output is still True,
# so return the converted result
if return_output and not args.noreturn:
if result is not ri.NULL:
with localconverter(converter) as cv:
res = cv.rpy2py(result)
return res
__doc__ = __doc__.format(
R_DOC='{0}{1}'.format(' '*8, RMagics.R.__doc__),
RPUSH_DOC='{0}{1}'.format(' '*8, RMagics.Rpush.__doc__),
RPULL_DOC='{0}{1}'.format(' '*8, RMagics.Rpull.__doc__),
RGET_DOC='{0}{1}'.format(' '*8, RMagics.Rget.__doc__)
)
[docs]
def load_ipython_extension(ip):
"""Load the extension in IPython."""
ip.register_magics(RMagics)