In [1]:
from functools import partial
from rpy2.ipython import html
html.html_rdataframe=partial(html.html_rdataframe, table_class="docutils")
tidyr in Python¶
In [2]:
from rpy2.robjects.lib.tidyr import DataFrame
/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rpy2/robjects/lib/dplyr.py:27: UserWarning: This was designed against dplyr versions starting with 1.0 but you have 1.1.4 warnings.warn( /opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rpy2/robjects/lib/tidyr.py:12: UserWarning: This was designed against tidyr versions starting with 1.2. but you have 1.3.1 warnings.warn(
(note: dplyr
is implicitly used by tidyr
.)
In addition to that, and because this tutorial is in a notebook, we initialize HTML rendering for R objects (pretty display of R data frames).
In [3]:
import rpy2.ipython.html
rpy2.ipython.html.init_printing()
In [4]:
from collections import OrderedDict
from rpy2.robjects.vectors import (StrVector,
IntVector)
dataf = DataFrame(OrderedDict(x=StrVector(("a", "b", "b")),
y=IntVector((3, 4, 5)),
z=IntVector((6, 7, 8))))
dataf
Out[4]:
x | y | z | ||
---|---|---|---|---|
0 | 1 | a | 3 | 6 |
1 | 2 | b | 4 | 7 |
2 | 3 | b | 5 | 8 |
In [5]:
dataf.spread('x', 'y')
Out[5]:
z | a | b | ||
---|---|---|---|---|
0 | 1 | 6 | 3 | NA_integer_ |
1 | 2 | 7 | NA_integer_ | 4 |
2 | 3 | 8 | NA_integer_ | 5 |
Reuse. Get things done. Don't reimplement.